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One of the fundamental properties of the quantum gravity is the holographic princi-

ple [1, 2]. While the holography unveils some mysteries about the quantum gravity such

as information paradox or the entropy of black holes, it is imperative to understand that

not all gravitational theories are consistent with the holographic interpretations. Seem-

ingly consistent bulk gravitational theories (with arbitrary matters) by themselves might

become inconsistent once we resort to their holographic constraint from dual field theories.

In a recent beautiful paper by Hellerman [3], it has been shown that the energy spec-

trum of the (1 + 2) dimensional quantum gravity (with matter) that has a vacuum AdS3

solution is severely constrained from the modular invariance, which is inherited from the

absence of a global gravitational anomaly in the dual field theory. The theorem is strong

in the sense that it is not based on the assumptions of underlying string theories or su-

persymmetry at all. Rather only the existence of the holographic dual field theory, which

must be unitary and anomaly free, is assumed.

In this letter, with the same spirit but from a completely different approach, we show

that a certain class of field configurations, and so are the actions that generate them,

are forbidden in (1 + 2) dimensional quantum gravity. The forbidden actions include the

ones that reveal spontaneous Lorentz symmetry breaking or the ghost condensation. We

show that such actions cannot be consistent as a part of any quantum theories of gravity,

and as a direct consequence, the spontaneous Lorentz symmetry breaking and the ghost

condensation induced by such actions cannot possibly occur within any consistent quantum

theories of gravity.

A key constraint that is imposed in (1 + 2) dimensional quantum gravity — we will

come back to the higher dimensional theories at the end of this letter — is that the dual

(1 + 1) dimensional field theories never allow scale invariance without possessing the full

conformal invariance under the assumptions that

1. the theory is unitary,

2. the theory is Poincaré invariant, and

3. the theory has a discrete spectrum.

This theorem has been proved in [4] by Polchinski with the usage of the c-theorem [5].

Under the corresponding assumptions, the dual gravitational theories should never show

the corresponding scale invariant but non-conformal field configuration.1 The first two

assumptions always seem reasonable to make in the dual gravitational theories. The last

assumption is equivalent to the statement that we have a finite number of on-shell degrees

of freedom as low energy excitations, which are valid in any known candidates for quantum

theories of gravity in (1 + 2) dimension that have a low energy gravitational field theory

description (e.g. compactification of the string theory).2

1Once we relax these assumptions, there are some known counterexamples: see e.g. [6–8].
2At a particular corner of the moduli space, the string compactification such as D1-D5 system shows

continuous mass spectrum, and the third assumption of Polchinski’s theorem could be violated. It is clear,

however, that those theories do not possess field theory descriptions, so their study is beyond our intention

to exclude seemingly consistent field theories from the quantum gravity constraint. The author would like

to thank Shahin Sheikh-Jabbari for related discussions.
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Let us consider the realization of such hypothetical (1+2) dimensional geometries dual

to scale invariant but not conformal field theories in (1 + 1) dimension. The impossibility

of such field configurations will lead to highly non-trivial constraints on the possible matter

action. We start with the AdS3 background:

gµνdxµdxν =
−dt2 + dx2 + dz2

z2
=

dwadwa + dw2
0

w2
0

. (1)

It is easy to see that there do not exist any scale invariant deformations of the geometry

that are non-conformal once we assume the Poincaré invariance (see [9] for related studies

in the non-relativistic case). However, non-trivial matter configurations could break the

conformal invariance while preserving the scale invariance.

One choice is the massive 1-form field whose field configuration is given by A =

Aµdxµ = adz
z

. Another possibility is the axionic scalar field whose field configuration

is given by φ = c log z. Here, the constant shift symmetry of the axionic scalar field

φ(xµ) → φ(xµ) + λ must be gauged in order to ensure the scale invariance. These mat-

ter configurations indeed break the special conformal transformation: δwa = 2(ǫbwb)w
a −

(w2
0 + wbwb)ǫ

a, δw0 = 2(ǫbwb)w0, but they preserve the scale invariance as well as all the

Poincaré invariance.

The violation of the special conformal transformation can be seen in the holographic

three-point functions. For instance, let us consider scalar fields ϕi (i = 1, 2, 3) prop-

agating in the AdS3 space with the scaling dimension ∆i related to the mass mi as

∆i = 1 +
√

1 + m2
i . We introduce the non-conformal 1-form background field A = adz

z

with the coupling L = −ϕ1ϕ2A
µ∂µϕ3. By using the holographic prescription [10, 11] (see

in particular [12] for tricks to compute three-point functions) and substituting the back-

ground value of Aµ, the contributions to the three-point function of dual operators Oi from

non-zero a can be computed as

〈O1O2O3〉 = a

∫

d3w

w3
0

K∆1
(w, x1)K∆2

(w, x2)w0∂w0
K∆3

(w, x3) , (2)

where the normalized bulk-to-boundary propagator is given by

K∆(w, x) =
Γ(∆)

πΓ(∆ − 1)

(

w0

w2
0 + (xa − wa)2

)∆

. (3)

The resulting three-point function is not given by the standard conformal form:

c123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

(4)

with a constant c123. Note that the inversion trick that has been employed in [12] cannot

be used here because the amplitude is no longer inversion invariant. We emphasize that

the tree level discussion with a particular form of the interaction here is only of illustrative

purposes: even without such a specific interaction L = −ϕ1ϕ2A
µ∂µϕ3, the theory would

generate conformal non-invariant amplitudes at a higher loop order.
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Polchinski’s theorem demands that the dual gravitational theories cannot accommo-

date such hypothetical scale invariant but non-conformal dual field configurations. There-

fore, we conclude that any consistent quantum theories of gravity must not contain such

backgrounds as a solution. This yields a strong constraint on the low-energy effective field

theories for the quantum gravity in (1 + 2) dimension. As we will show below, some effec-

tive field theories that are phenomenologically interesting and well-studied in literatures

(at least in (1 + 3) dimension) are completely ruled out.

In this letter, we investigate two examples. The first one is the so-called “spontaneously

Lorentz symmetry breaking” massive vector field theory (coupled with the gravity: see

e.g. [13–17]). The matter Lagrangian is

Lv = −
1

4
FµνFµν −

∑

n=1

gn

2n
(AµAµ)n , (5)

where Fµν = ∂µAν − ∂νAµ and we may also introduce (negative) cosmological constant Λ

as a part of the gravity action:

Lg =
1

2
R − Λ . (6)

By choosing appropriate coupling constants gn, it is easy to see that the equations of motion

for (5) is solved by A = adz
z

. Furthermore, the energy momentum tensor is proportional to

the metric Tµν ∝ gµν for any gn thanks to the equation of motion for Aµ: the geometry is

still AdS3. Thus, the “spontaneously Lorentz symmetry breaking” massive vector theory

does predict the scale invariant but non-conformal field configuration forbidden by the

non-existence of the dual field theory.

We, therefore, exclude effective field theories based on the action (5) unless a = 0 is the

only solution because they would provide non-existing dual field theories by holography.

With the same token, the spontaneous Lorentz symmetry breaking based on such actions

are incompatible with the quantum gravity constraint. We note that the fact that the

would-be Lorentz symmetry breaking vacua of (5), which might be different from our

solution, do break the Lorentz invariance is not incompatible with our assumptions of

Poincaré invariance in our vacuum at all. We regard them as pathological theories simply

because they predict a particular vacuum whose existence is forbidden in any quantum

theories of gravity, irrespective of the existence of Lorentz symmetry breaking vacua (or

time-dependent solutions) besides the inconsistent vacuum we have discussed.

In our discussion, we have added a bare cosmological constant to obtain AdS3 space

as a starting geometry. This is not important because we can repeat the same analysis in

dS3 space and apply the dS/CFT correspondence [19] to obtain a similar result. Only one

caveat here is that the dS/CFT correspondence is a correspondence between the de-Sitter

space and the Euclidean CFT, so the unitarity should be replaced by the reflection posi-

tivity whose origin in the dual gravity side is not so obvious as the unitarity in AdS/CFT

correspondence [20]. We note that the validity of dS/CFT is less well-established than the

AdS/CFT, and in addition, we have to impose an extra assumption of the unitarity here to

use Polchinski’s theorem. The strict zero cosmological constant case is another exception

– 4 –



J
H
E
P
1
1
(
2
0
0
9
)
0
6
1

because we do not have any obvious candidates for the holography, but it is a measure zero

set in the space of cosmological constant, so in our opinion it is less important.

The other example is the so-called “ghost condensation” model [18] with

the Lagrangian

Ls =
∑

n=1

hn

2n
(∂µφ∂µφ)n . (7)

We gauge the constant shift symmetry of the axionic scalar field φ: φ(xµ) → φ(xµ)+λ. We

can show that φ = c log z is a solution of the equation of motion by appropriately choosing

coupling constants hn. In addition, the energy momentum tensor for φ is proportional to

the metric: Tµν ∝ gµν thanks to the scalar equation of motion, so the field configuration

must be dual to a scale invariant but non-conformal field theory.

Again, Polchinski’s theorem excludes such a possibility; therefore, we conclude that

the Lagrangian (7) can never appear in any consistent quantum theories of gravity unless

c = 0 is the only solution. The ghost condensation, as a corollary, cannot be realized in

any consistent quantum theories of gravity in (1 + 2) dimension, either.

One might argue that the ghost condensation studied above is space-like and the time-

like ghost condensation must be physically inequivalent to the space-like one. The spirit

of the ghost condensation is to study a finite vicinity of the time-like condensation as

an effective field theory, and the consistency would be imposed only around the time-like

condensation. We point out that within our framework, the time-like condensation that

violates Polchinski’s theorem is possible in dS/CFT setup. With the positive cosmological

constant, the field configuration ds2 = −dt2+dx2+dy2

t2
, φ = c log t is a solution dual to a scale

invariant but non-conformal field theory. An extra assumption of the validity of dS/CFT

and the reflection positivity in the boundary theory enables us to use Polchinski’s theorem

to rule out such field configurations in the bulk.3

The space-like ghost condensation is believed to be pathological from the analysis

of [18]. The holographic manifestation of the inconsistency is the violation of Polchinski’s

theorem. On the other hand, the inconsistency of the time-like ghost condensation that has

been indicated by the discussion above from the holography in de-Sitter space is quite un-

expected and rather indirect from the effective gravitational field theory viewpoint It seems

plausible that any perturbative analysis of the spontaneously Lorentz symmetry breaking

background or ghost condensation is not able to spot an immediate inconsistency directly

related to our arguments. Nevertheless, once we believe that the holographic nature of the

quantum gravity is essential, we have to accept this constraint. Note, however, that the va-

lidity of the dS/CFT is less established than the AdS/CFT, and in particular the unitarity

of the corresponding CFT may or may not hold, so it is indeed possible that the assumption

of the holography might be wrong unlike in the more solid AdS/CFT case elaborated in

the main part of this paper. For time-like condensation, we do not currently have a good

physical interpretation of the inconsistency from the gravity viewpoint (see, however, [23]

for one attempt from black hole thermodynamics; see also [24] for superluminal constraint;

3The author would like to thank Sergei Dubovsky for useful discussions. The time-like condensation in

the AdS space is necessarily time-dependent and violates the assumption of Poincaré invariance.
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the stability issue of the vector condensation in flat space has been discussed in [21, 22]).

It would be of great interest to find more convincing arguments from the gravity side.

Finally, the constraint discussed in this letter only applies to (1+2) dimensional quan-

tum gravity. The state of the art is that Polchinski’s theorem is only proved in (1 + 1)

dimension though we do not know any counterexamples in higher space-time dimensions.

Thus, the generalizations to higher dimensions are not ruled out but still open. The ar-

gument given in this letter is, however, valid in any space-time dimension, so once the

analogue of Polchinski’s theorem is proved, one can immediately claim the same result in

any space-time dimension. Given the simplicity of the argument presented in this letter

and the strong consequence (e.g. ruling out spontaneous Lorentz symmetry breaking and

ghost condensation based on effective actions (5) and (7)), it is of utmost importance to

update our knowledge about the (in)equivalence of scale invariance and conformal invari-

ance in higher dimensional field theories. On the other hand, an experimental discovery

of spontaneous Lorentz symmetry breaking or ghost condensation in nature might be a

breakthrough to find counterexamples of “Polchinski’s theorem” in (1 + 2) dimension.

The work was supported in part by the National Science Foundation under Grant No.

PHY05-55662 and the UC Berkeley Center for Theoretical Physics.
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